Preliminary Draft

A Data Exchange Standard for Optical/IR Interferometry

Prepared by NPOI and COAST

First Version: 10 January 2001 Last Update: 15 June 2001

1 Introduction

Considering the number of optical and infrared interferometers in operation or under construction it seems imperative that a standard be established which will allow the exchange of data among various groups. As a first step, we should try to agree on a standard for exchanging *calibrated* data. By first concentrating on calibrated data we only need those instrumental parameters which are required to characterize the data for subsequent analysis. Our ultimate goal is to cast the standard as a FITS file format definition, but first we should agree on what should be included in the standard.

<u>Jaffe and Cotton</u> have been working on a FITS file format for use with the VLTI backends. While the Jaffe and Cotton document contains elements to handle the storage of raw data, many of their elements are also needed for general data exchange. Below we summarize the information we think is needed for data exchange. In what follows we have loosely followed the FITS usage of keywords and column headings. The keywords can be considered as scalars, while the columns can be simply an array, or an array of pointers to other arrays. Allowed data types are: $\mathbf{I} = \text{integer (16-bit)}$, $\mathbf{A} = \text{character}$, $\mathbf{E} = \text{real}$, $\mathbf{D} = \text{double}$, $\mathbf{L} = \text{logical}$. The number in parentheses is the dimensionality of the entry.

2 Tables Defined by the Standard

OI_ARRAY

<u>Keyw</u>	<u>ords</u>	
REVISION	Ι	Revision number of the table definition
ARRNAM	\mathbf{A}	Array Name
FRAME	\mathbf{A}	Coordinate Frame
		Do we need a choice, or is GEOCENTRIC enough?
ARRAYX		
ARRAYY	D	Array center coordinates
ARRAYZ		
DATE_OBS	\mathbf{A}	Start date/time of observations

NELEMENT I Number of array elements

<u>Column Headings</u> (one row for each telescope)

TEL_NAME **A** (8) Telescope name

STA_NAME **A** (8) Station name

INDEX I (1) Station number

This may be used as an index into other tables.

DIAMETER **E** (1) Element diameter

STAXYZ **D** (3) Station coordinates relative to array center

POLN A (8) Polarization state, ask GI2T group

STAR

Keywords

REVISION I Revision number of the table definition

NBANDS I Number of wavelength bands

Column Headings (one row for each source)

STAR_ID **I** (1) Index number

STAR **A** (8) Star name

CALCODE A (4) Calibrator code, non-blank means calibrator MAG E (NBANDS) Magnitude at each band, for calibrators

BANDNAME A (NBANDS) Wavelengths for magnitudes (band names?)

RAEPP $\mathbf{D}(1)$ RA at mean equinox

DECEPP **D** (1) DEC at mean equinox

EQUINOX $\mathbf{D}(1)$ Equinox

RAPP **D** (1) Apparent RA at beginning of observation **D**ECAPP **D** (1) Apparent DEC at beginning of observation

RA_ERR **D** (1) Error in apparent RA DEC ERR **D** (1) Error in apparent DEC

DEC_ERR **D** (1) Error in apparent DEC SYSVEL **D** (1) Systemic radial velocity

VELTYP A (8) Reference for radial velocity ('LSR', 'GEOCENTR', etc.)

VELDEF **A** (8) Definition of radial velocity ('OPTICAL', 'RADIO')

PMRA **D** (1) Proper motion in RA

PMRA_ERR **D** (1) Error of proper motion in RA

PMDEC **D** (1) Proper motion in DEC

PMDEC_ERR **D** (1) Error of proper motion in DEC

PARALLAX **E** (1) Parallax

PARA_ERR **E** (1) Error in parallax

SPECTYP **A** (8) Spectral type

WAVELENGTH

Keywords

REVISION I Revision number of the table definition

NWAVE I Number of wavelength channels

<u>Column Headings</u> (one row for each detector)

EFF_WAVE **E** (NWAVE) Effective wavelength of each channel EFF_BAND **E** (NWAVE) Effective bandpass of each channel

OI_DATA

Keywords

REVISION I Revision number of the table definition

NUMREC I Number of records

Column Headings (one row for each measurement)

STAR_ID I (1) Star number as index into star table

TIME **D** (1) IAT time of observation

INT_TIME $\mathbf{D}(1)$ Integration time

Comment: At least one of the following must be present

VISDATA **D** (NWAVE) Visibility - stored as a complex number

VISERR **D** (NWAVE) Error in Visibility

or

VIS2DATA **D** (NWAVE) Squared Visibility

VIS2ERR **D** (NWAVE) Error in Squared Visibility

or

T3AMP **D** (NWAVE) Triple Product Amplitude

T3AMPERR **D** (NWAVE) Errors in Triple Product Amplitude

Triple amplitude may be meaningless, as is true for COAST

T3PHI **D** (NWAVE) Triple Product Phase in degrees

T3PHIERR **D** (NWAVE) Errors in Triple Product Phase in degrees

NUV I (1) Number of UV points over which the data is averaged

UVCOORD **D** (NUV, 2) Coordinates of points over which data is averaged.

UVWEIGHT **D** (NUV) Weights of UV points over which the data is averaged

T3COORD **D** (4) UV coordinates of the triple product.

STATNUM I (3) Station numbers contributing to the data. 2 or 3 numbers

FLAG L (NWAVE) Flag

3 Optional Tables

It may be useful to allow for some optional tables. For example, there might be one that contains instrument specific information, such as the backend configuration. Another optional table could contain information relevant to astrometry.